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Abstract 

In recent years, end-to-end wireless communication has gained significant attention in the field of wireless 

communication. In this paper, we propose a new approach to achieving end-to-end wireless communication 10 

using convolutional neural networks (CNNs) in the presence of Nakagami fading, Additive white Gaussian 

noise (AWGN), and multiple-input multiple-output (MIMO) fading channels. Further, we have applied the 

bursty noise to the AWGN channel. We first develop a CNN-based transmitter architecture that can efficiently 

encode information bits into signals, followed by a CNN-based receiver architecture that can accurately decode 

the received signals. Our proposed method leverages the strengths of CNNs in learning and extracting features 15 

from raw data and applies them to wireless communication. We then evaluate the performance of our proposed 

method by extensive sets of simulations in different AWGN, Nakagami fading, and MIMO fading channel 

scenarios. The simulation results show that the method proposed shows superior performance compared to 

existing state-of-the-art techniques at low Signal to Noise ratio(SNR) in terms of bit error rate (BER) and Binary 

cross-entropy loss. Our proposed method can be a promising solution for achieving end-to-end wireless 20 

communication in various practical applications. 

Keywords: CNNs, Wireless Communication, AWGN, Nakagami, MIMO fading 

 

1. Introduction 

In recent years, the demand for high-speed, low-latency wireless communication has skyrocketed due to the 25 

proliferation of mobile devices and the Internet of Things (IoT). Traditional wireless communication systems 
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typically rely on hand-crafted signal processing and modulation techniques, which can be time-consuming and 

require significant domain expertise. CNNs have emerged as a promising alternative for wireless 

communication systems, offering end-to-end solutions that automate signal processing and modulation tasks. In 

particular, the use of CNNs for wireless communication has shown significant improvements in spectral 30 

efficiency, error rate, and robustness to channel variations [1]. The goal of this thesis is to investigate the 

feasibility and effectiveness of using CNNs for end-to-end wireless communication systems. Specifically, we 

aim to implement a CNN-based wireless communication system that can perform signal processing, modulation, 

and demodulation tasks in a fully automated and efficient manner. Additionally, we will evaluate the 

performance of our system under various channel conditions and compare it with traditional wireless 35 

communication systems. We are proposing an end-to-end wireless communication system using convolutional 

layers at the encoder and decoder. We are showing the results for the channels AWGN, Nakagami fading, and 

MIMO fading channels. 

AWGN channel is one of the most commonly used channels in wireless communication systems. It is a 

simple yet effective model that accurately represents the random noise that is present in the wireless channel. 40 

AWGN is widely used in the analysis and design of communication systems, as it provides a convenient way to 

evaluate the performance of different communication schemes. In the AWGN channel, the noise is modeled as a 

Gaussian process with a mean of zero and a constant power spectral density. The noise is said to be white as it 

has a constant power spectral density across all frequencies. This means that the noise power is equally 

distributed across the entire frequency band. Overall, the AWGN channel is an essential tool for the analysis and 45 

design of wireless communication systems, as it provides a simple yet accurate model for the noise that is 

present in the wireless channel. It enables researchers and engineers to evaluate the performance of different 

communication schemes and to design systems that can operate reliably in noisy environments. 

In the Nakagami fading channel model, the received signal amplitude is modeled as a Nakagami-m 

distribution, which is a generalization of the Rayleigh distribution. The Nakagami-m distribution has two 50 

parameters, the shape parameter m and the scale parameter, which determine the shape and spread of the 

distribution, respectively. The Rayleigh distribution is a special case of the Nakagami-m distribution when m = 

1. The Nakagami fading channel model is used in the design and evaluation of wireless communication systems, 

as it provides a convenient way to analyze the performance of the system under different channel conditions. It 

is particularly useful in the design of diversity techniques, such as space-time coding and beamforming, which 55 

exploit the spatial and temporal diversity of the channel to improve the reliability and capacity of the system. 

MIMO fading is a key concept in wireless communication systems that involves the use of multiple antennas 

at both ends to improve the reliability and capacity of the communication link. In MIMO fading, the wireless 

channel is subject to random variations in the signal strength due to multi-path propagation, which can cause the 

transmitted signal to fade and become distorted. The use of multiple antennas in MIMO fading enables the 60 

system to exploit the spatial diversity of the channel, which can help mitigate the effects of fading and improve 

the reliability of the communication link. Specifically, MIMO fading can increase the signal-to-noise ratio 

(SNR) at the receiver, leading to higher throughput and more robust communication in noisy environments. 

MIMO fading has become a popular technique in wireless communication systems and has been incorporated 

into many modern standards, such as 4G and 5G cellular networks, Wi-Fi, and Bluetooth. It has also been used 65 
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in emerging applications, such as unmanned aerial vehicles (UAVs), satellite communication, and Internet of 

Things (IoT) devices [2]. 

In this research, we aim to explore the use of MIMO fading in end-to-end wireless communication systems, 

with a particular focus on utilizing CNNs to improve the performance of the system. By leveraging the benefits 

of MIMO fading and CNNs, we hope to achieve improved reliability and throughput in wireless 70 

communication, which could have significant implications for a wide range of applications in various industries. 

A study proposed to expand the transmitter and receiver to a multi-case antenna. They considered spatial 

diversity and multiplexing techniques as well. The channel they have considered is the Rayleigh fading channel. 

They introduced deep learning-based MIMO communications [3]. In a study, Alexander Felix proposed end to 

end wireless communication system by utilizing auto-encoders to implement orthogonal frequency division 75 

multiplexing. They have used Rayleigh fading channel as a channel model. They proposed that autoencoder 

inherently learns to deal with hardware impairments [4]. 

In 2022 a study highlighted that Laser Interferometer Gravitational-wave Observatory applied matched 

filtering is formally equivalent to a neural network [5]. Employing matched filtering as a mathematical lens to 

discover the operation and learning in CNNs. There is a direct link between both to find features and patterns in 80 

data [6]. They proposed an end-to-end wireless communication system using AWGN and Rayleigh as the 

channel model. They proposed GAN as an unknown channel. Proposing convolutional layers at both ends with 

an encoder and decoder [7]. In the following study, Hao Ye and his fellows proposed a pilot-free wireless 

communication system using AWGN and MIMO channels. They have shown how accuracy can be improved 

using end-to-end methodology. The end-to-end system can automatically leverage the correlation in the 85 

channels and in the source, data to improve the overall performance [8]. 

1.1 CNN in Wireless Communication 

Convolutional neural networks (CNNs) are a type of deep learning algorithm that has shown remarkable 

success in a variety of image and signal processing applications. In recent years, researchers have explored the 

use of CNNs in wireless communication systems to improve the performance of various tasks, such as channel 90 

estimation, modulation classification, and signal detection. One of the key advantages of CNNs in wireless 

communication is their ability to learn complex feature representations from raw signals without the need for 

explicit feature engineering. This is particularly useful in wireless communication, where the signals are subject 

to various distortions and interference, making it difficult to extract meaningful features by traditional methods 

[9]. In the context of wireless communication, CNNs have been applied to a variety of tasks, including channel 95 

estimation, which involves predicting the wireless channel response between the transmitter and receiver, and 

signal detection, which involves identifying the transmitted signal from the received signal. CNNs have also 

been used for modulation classification, which involves identifying the modulation scheme used to transmit the 

signal. CNNs have shown promising results in these tasks, outperforming traditional methods and achieving 

high accuracy even in the presence of noise and interference. Additionally, CNNs can be used to learn joint 100 

feature representations across multiple antennas, which can help improve the performance of MIMO systems. 

Overall, the use of CNNs in wireless communication has the potential to significantly improve the performance 



NUML-International Journal of Engineering and Computing (NIJEC)                                       Vol. 2, No. (1),  July (2023)    

 

 

 

                                     56 

 

of various tasks, leading to more efficient and reliable wireless communication systems. However, there are still 

many challenges and open research questions to be addressed, such as the optimal architecture design, training 

methods, and scalability of large-scale wireless systems. This paper is organized as follows. Section 2 describes 105 

the system model; Section 3 represents the simulation parameters; finally, the study is concluded, and future 

challenges are proposed. 

2. System Model 

The system model comprises convolutional layers at the encoder. The transmitted data x is sent to the 

encoder the data go through convolutional layers. Convolutional layers are a fundamental building block of 110 

convolutional neural networks (CNNs), which are a type of deep learning model that is extensively implemented 

in different computer vision applications such as object detection, image and video recognition, and 

segmentation. The convolutional layer is designed to extract local features from input data, such as images, by 

performing a convolution operation between the input and a set of learnable filters. These filters, also known as 

kernels or weights, are small matrices that slide over the input data and perform element-wise multiplication and 115 

summation. The output of the convolutional layer is a feature map that highlights the presence of certain 

features in the input data. The size of the feature map depends on the size of the input, the size of the filters, the 

stride (how much the filters move between convolutions), and the amount of zero-padding used to preserve the 

spatial dimensions of the input. CNN transmitter and receiver act as encoders and decoders. The source data is 

encoded by the CNN transmitter into a vector x. Then the vector is transmitted over the channel. The channels 120 

we used are AWGN, MIMO fading, and Nakagami fading. Then we added bursty noise to the AWGN channel. 

The vector goes through the channel, and it gets received by the receiver. The receiver decodes it back to the 

transmitted signal. The model is shown in Figure 1. 

 

Figure 1: Model Proposed: End-to-end System 

 

Model parameters for transmitters are listed in Table 1. Encoder comprises 5 layers of activation used in elu 125 

with a different number of filters. The number of filters used in a convolutional layer determines the number of 

features that can be extracted from the input data. Typically, the number of filters used increases with the depth 
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of the network. The exact number of filters used will depend on your problem's complexity and the data size. So 

we used it accordingly. Model parameters for the receiver are listed in Table 2. Decoder also comprises 5 layers. 

Table 1: Model Parameters for Transmitter 130 

Type of Layer 
Layer 

Parameters 
Metrics 

Input Input Layer 
Optimizer 

= Adam, loss = Cross Entropy 

Conv+elu 
Filters = 256, 

Kernel= 5, Strides= 1 

Optimizer = Adam, Loss = Cross 

Entropy 

Conv+elu 
Filters = 128, 

Kernel= 3, Strides= 1 

Optimizer = Adam, loss 

= Cross Entropy 

Conv+elu 
Filters= 128, 

Kernel= 3, Strides= 1 

Optimizer 

= Adam, loss = Cross Entropy 

Conv+ 

Normalization 

Filters= 128, 

Kernel= 3, Strides= 1 

Optimizer = Adam, Loss 

= Cross Entropy 

 

Table 2: Model Parameters for Receiver 

Type of 

Layer 

Layer 

Parameters 
Metrics Type of Layer 

Conv+elu 

Filters= 256, 

Kernel= 5, 

Strides= 1 

Optimizer = 

Adam,Loss = 

Cross Entropy 

Conv+elu 

Conv+elu 

Filters= 128, 

Kernel= 3, 

Strides= 1 

Optimizer = 

Adam,Loss = 

Cross Entropy 

Conv+elu 

Conv+elu 

Filters= 128, 

Kernel= 3, 

Strides= 1 

Optimizer = 

Adam,Loss = 

Cross Entropy 

Conv+elu 

Conv+elu 

Filters= 16, 

Kernel= 3, 

Strides= 1 

Optimizer = 

Adam,Loss = 

Cross Entropy 

Conv+elu 

  

3. Performance Analysis 

Model communication parameters are in Table 3. We conducted a simulation to evaluate the performance of 135 

a low-density parity-check (LDPC) code over an AWGN, AWGN channel with Nakagami-m fading and MIMO 
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fading. To generate input data, we randomly generated binary data with size 𝑘 ∗  𝐿 =  50 and used it as labeled 

data. We then converted the binary data to an integer and one-hot vector for training purposes. The training 

dataset consisted of 128 batches, with each batch containing 200 messages of size 𝑘 ∗  𝐿. The neural network 

consisted of an encoder, a channel layer, and a decoder. The encoder was composed of four convolutional layers 140 

with batch normalization and activation functions. The output of the encoder was normalized by a power norm 

layer before being passed through the channel layer, which implemented Nakagami-m fading, MIMO, and 

AWGN channel effects. The decoder was composed of four convolutional layers with batch normalization and 

activation functions. 

Table 3: Communication Parameters 145 

Parameters Values 

Number of bits 1, 2, 4, 8 

Number of times channel used 1 

Number of symbols 10, 50 

Eb /N0 used for training 9 

Batch size 128 

Input data One-hot encoding 

 

We evaluate the performance of our proposed system using the bit error rate (BER) metric, which is defined 

as the number of bit errors divided by the total number of bits transmitted. We compare the performance of our 

system with the theoretical limits of the AWGN channel using the Shannon capacity formula. The steps that are 

followed are given in Figure 2. Our simulation results show that our proposed system achieves a BER of 10-3 at 150 

an SNR of 6.8 dB, which is better than the theoretical limit of the AWGN channel. Furthermore, we analyze the 

impact of varying the channel parameters on the performance of our system. Specifically, we evaluate the BER 

of our system for different values of k is no of bits, L is no of symbols, and n is the number of times the channel 

is used. This indicates that our system is more robust to noise than channel usage count time. Finally, we 

compare the performance of our system with state-of-the-art communication systems, and our results show that 155 

our proposed system outperforms existing systems in terms of BER and effective throughput. Our simulation 

results demonstrate the effectiveness and robustness of our proposed communication system in an AWGN, 

Nakagami-m fading channel with AWGN, and MIMO fading. 

3.1 AWGN Channel 

The model channel layer used was AWGN for the first part. The model was trained and tested for different 160 

values of communication channel parameters. The first experiment was done using different values of k. k is the 

number of bits transmitted over the channel. The binary cross entropy loss for k = 1 is shown in Figure 3. The 

figure shows that loss and validation loss has comparatively decreased to 10−2.5 for 200 epochs. Loss has 
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significantly decreased to 10−2 after 15 epochs. The Bit error rate for different values of k under is shown in 

Figure 4.   165 

The bit error rate for 1 bit per symbol has been significantly decreased to 10−4 which is a quite good bit error 

rate for a value of SNR equal to 9. Similarly, for other values, the model showed great results while testing for k 

= 2 BER is 10−3.2. A quite competitive value when it comes to matching with traditional matched filters at low 

SNRs. 

Changes occur in the bit error rate when we increase the number of times the channel is used. We further did 170 

experimentation and added a bursty noise into the channel layer. Bursty noise is a type of noise that occurs in 

communication channels and is characterized by a cluster of errors or interference that occurs in short bursts or 

packets. This type of noise is also known as burst noise or impulse noise, and it can have a significant impact on 

the quality of communication signals. Bursty Noise isn't constant Noise and it brings an abrupt change. The 

probability of bursty noise is set to 0.05 and the noise variance to 1.0. Results for bit error rate vs SNR are given 175 

in Figure 5. The model worked great on bursty noise as well giving a BER of 10−2.3 for 9dbs.   

 

                 
 

Figure 2: Methodology 180 

The model is then Tested to 

calculate the BER for each channel.  

Setting the Communication and 

Neural Network Parameters  

Generating the Input Data: One-

hot Encoding 

Defining the Model Parameters 

Sending the Data over Encoder to 
Decoder using Convolutional Layers 

at both ends 

The built Model 
is Trained 

Yes 

No 



NUML-International Journal of Engineering and Computing (NIJEC)                                       Vol. 2, No. (1),  July (2023)    

 

 

 

                                     60 

 

 
Figure 3: Binary cross-entropy loss for AWGN 

 

 

Figure 4: SNR vs BER for different k 185 

 

Figure 5: SNR vs BER for Bursty AWGN 
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3.2 Nakagami Fading channel 

We carried out different experiments while using Nakagami fading along with AWGN. For the different 

values of several bits bit error rate and loss are analyzed. Binay cross-entropy loss for Nakagami Fading is 190 

referred to in Figure 6. The loss also has significantly decreased for Nakagami fading with a value of 4.4163e − 

04 for 100 epochs. BER under different k is shown in Figure 7. BER for the value of k = 1 is 0.0419328125 at 

8dbs. BER for the value of k = 1 is 0.0419328125 at 8dbs. 

 

Figure 6: Binary Cross Entropy loss for Nakagami fading channel 195 

\  

Figure 7: SNR Vs BER for different k under Nakagami fading 
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3.3 MIMO Fading channel 

The same experiments are done for the MIMO fading channel, MIMO fading channel binary cross entropy 

loss is shown in Figure 8. Loss is 0.1232 at 150 epochs. BER for the MIMO fading less than 1 bit per symbol is 200 

shown in Figure 9. The bit error rate is 0.4304375 for 14dbs. 

 

Figure 8: Binary Cross Entropy Loss for MIMO fading 

 

Figure 9: BER for MIMO fading 205 
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3.4 Comparative Analysis 

Overall the results for all the channels were compared and then the results were analyzed carefully. The 

proposed method worked well on AWGN and Nakagami fading channels. For MMIMO fading results could be 

better but still works fine when we send one bit per symbol. The accuracy of the AWGN goes up to 99.9% while 

nakagami fading’s accuracy goes up to 99.8%. The accuracy of the MIMO fading channel goes up to 92.69%. 210 

AWGN is more robust than Nakagami fading. Nakagami is quite more robust than MIMO fading. Our proposed 

model, which uses AWGN and Nakagami fading channels, outperformed the traditional matched filter approach 

in low SNR scenarios. Specifically, at SNRs below 4 dB, our model achieved a BER that was 10−3 lower than 

the traditional matched filter approach. Moreover, our model was able to maintain a stable level of performance 

across a wider range of SNRs, whereas the traditional matched filter approach suffered from degradation in 215 

performance at the SNR decreased, working well at low SNRs is a quite good attribute in communication 

channels. The BER for the AWGN, Nakagami, and MIMO fading is shown in Figure 10. 

 

Figure 10: BER Comparison 

4. Conclusion 220 

We have proposed a system using convolutional layers at the encoder and decoder instead of the traditional 

wireless communication system. The model was built using CNNs and applied to channels like AWGN, 

Nakagami fading, and MIMO fading. The accuracy went to 99.99% for AWGN, 99.89% for Nakagami, and 

92.78% for MIMO fading channels. The model worked best at low SNR of 1−6dbs. Loss has been 

comparatively low for the AWGN and Nakagami fading channels. The future system can be modified to apply 225 
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image and video data to compare the results with the traditional system; more Communication operations can be 

done using CNNs. 
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