
1

A Comprehensive Survey of Cutting-Edge Methods for Software Architecture Evaluation

Amna Sajid
a,
 , Muhammad Waqas Arshadb

a,* School of Computing, National University of Computer and Emerging Sciences, Islamabad

b Department of Computer Science & Engineering, University of Bologna, Bologna-Italy (muhammadwaqas.arsha2@unibo.it)

*Corresponding author: First Author (amnasajid1996@gmail.com)

Submitted

01-Dec-2023
Revised

13-Dec-2023
Published

21-Feb-2024

Abstract

The crucial responsibility of assessing software architecture is of utmost importance in ensuring that a software

system conforms to superior qualities. It is a crucial tool for cutting expenses and labor during the course of the

software development lifecycle. The main goal of software architecture evaluation is to provide reliable methods for

determining and improving the quality characteristics that are innate in software. This study is deeply devoted to

investigating the wide range of techniques used in software architecture assessment. One of the main focuses of

these evaluation techniques is scenario-based assessments, which offer a comprehensive picture of the software's

behavior under different circumstances. Within the scope of this study, a thorough analysis is carried out on eighteen

different methods. Thirteen of these fall into the category of early evaluation techniques, which are positioned to

detect and address architectural problems at the outset of development. The other five strategies are classified as late

assessment techniques and focus on validating and optimizing the software architecture in the latter stages of the

development process.

Keywords: Software Architecture, Evaluation methods, Quality attributes

1. Introduction

In order to make sure that a software architecture is efficient, high-quality, and in line with the intended goals,

software architecture evaluation techniques are essential. Scenario-based evaluations are a popular technique that

analyzes realistic usage scenarios to evaluate the architecture's performance in a range of situations and spot

bottlenecks and dangers. Workshops on quality attributes let stakeholders work together to identify and rank the

qualities that are most important to the success of a project. While SAAM concentrates on comprehending the

NUML International Journal of

Engineering and Computing

Volume: 2 Issue: 2

https://numl.edu.pk/journals/nijec

Print ISSN: 2788-9629

E-ISSN: 2791-3465

DOI:https://doi.org/10.52015/nijec.v2i2.56

https://numl.edu.pk/journals/nijec

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

connections between architectural aspects, techniques such as ATAM systematically assess trade-offs in

architectural decisions [1].

To promote traceability and comprehension, DARWIN places a strong emphasis on recording design rationales.

Modularity, coupling, and cohesiveness can be quantitatively evaluated using architectural metrics, while cost-

benefit analysis brings economic factors into decision-making. System performance is predicted by performance

modeling and simulation, which makes optimization easier. Using these techniques, separately or in combination,

provides a comprehensive approach to evaluating software architectures, supporting informed decision-making and

ensuring the architecture's resilience and alignment with project goals [2].

This research endeavors to cast a spotlight on the multifaceted landscape of software architecture evaluation by

delving into the diverse array of methods that populate the literature. By categorizing these methods, the study sheds

light on two distinctive yet interrelated classifications: early evaluation methods and late evaluation methods. Early

evaluation methods, positioned at the inception of software development, facilitate the identification and resolution

of architectural issues, offering a preemptive strike against potential challenges. On the other hand, late evaluation

methods come into play during subsequent phases, focusing on the validation and refinement of the architecture in

response to evolving project requirements and insights gained during development.

The survey conducted as part of this research illuminates the prevailing trends and nuances within the realm of

software architecture evaluation. It underscores the symbiotic relationship between early and late evaluation

methods, each playing a crucial role in fortifying the robustness and resilience of software architectures. Through a

comprehensive exploration of these methodologies, this research aims to provide a valuable resource for

practitioners and researchers alike, offering insights into best practices and emerging trends in the dynamic field of

software engineering [3].

2. Literature Review

The evaluation of software architecture encompasses a diverse array of methodologies tailored to

comprehensively assess its quality, effectiveness, and alignment with project goals. Among these methodologies,

several distinct types of evaluation methods have emerged as critical tools in the software engineering landscape.

These include scenario-based evaluations, where realistic usage scenarios are scrutinized to gauge the architecture's

performance under various conditions. Mathematical modeling techniques are employed to provide a quantitative

understanding of the architecture's behavior, offering a formalized approach to evaluation. Usage-based assessments

focus on real-world usage patterns and performance metrics derived from actual usage scenarios.

 Experience modeling is another avenue, leveraging insights from previous projects or domains to inform

architectural evaluations. Prototyping involves the creation of prototype architectures to validate design decisions

and assess their feasibility. Information modeling, on the other hand, utilizes models to represent and analyze the

information flows within the architecture [3].

 In the scope of this research, a meticulous examination of literature has been undertaken to delve into

prominent evaluation methods. Notable approaches covered include SAAM (Software Architecture Analysis

Method), ATAM (Architecture Tradeoff Analysis Method), ALMA (Architecture-Level Modifiability Analysis),

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

SABR (Scenario-Based Reliability Analysis), ISAAMCS (Improving Software Architecture Assessment Method by

Considering Social Factors), SALUTA (Scenario-Based Architectural Liveness Evaluation), ESAAMI (Early

Software Architecture In-Progress Monitoring and Improvement), and ALPSM (Architecture-Level Performance

Simulation Model). These methods contribute to a comprehensive understanding of the intricacies involved in

evaluating software architecture.

 Late evaluation approaches, such as those proposed by Tvedt et al., Lindvall et al., Fiutem and Antonio,

Murphy et al., and Sefika et al., play a crucial role in validating and refining architectural decisions in later stages of

the development process. Some of these approaches are tool-based, further emphasizing the integration of

technology in the evaluation process [4].

 By synthesizing insights from these diverse evaluation methods, this research aims to contribute to the

body of knowledge in software architecture evaluation. It provides a nuanced understanding of how these

approaches, ranging from scenario-based analyses to tool-supported late evaluations, can be strategically employed

to enhance the robustness and effectiveness of software architectures.

3. Evaluation Methods

The realm of software architecture evaluation is characterized by a rich tapestry of methodologies, each designed

to comprehensively assess and enhance the quality and effectiveness of software structures. While numerous

evaluation methods have been documented in the literature, this research takes a focused and comprehensive

approach by delving into 18 distinct methods. These methods collectively represent a diverse set of tools and

techniques, each contributing to the multifaceted landscape of software architecture evaluation.

 To systematically categorize and understand these methods, six overarching types of evaluation approaches

have been identified. The first among these is scenario-based evaluation, a method that involves scrutinizing the

architecture's performance under various realistic usage scenarios. Mathematical modeling comes into play as a

formalized and quantitative approach, offering a structured framework to analyze the intricate behavior of the

software architecture. Usage-based evaluations draw insights from real-world usage patterns, leveraging actual

usage scenarios to assess performance and usability [5].

 Experience modeling, another category, taps into the wealth of insights garnered from previous projects or

domains to inform architectural evaluations, offering a knowledge-driven perspective. Prototyping, on the other

hand, involves the creation of prototype architectures to validate design decisions and assess their feasibility,

providing a tangible and practical dimension to the evaluation process. Information modeling, the sixth type,

deploys models to represent and analyze the information flows within the architecture, facilitating a comprehensive

understanding of how data moves within the system.

 By explicitly outlining these six types and delving into 18 specific methods within this framework, this

research contributes to a nuanced understanding of the software architecture evaluation landscape. It provides a

structured and organized approach to navigating the multitude of evaluation methods, offering insights into their

unique strengths, applications, and contributions to the overarching goal of enhancing software architecture quality

[6].

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

3.1 Early Evaluation Methods

In the early stages of software development, when key architectural decisions are being formulated, scenario-

based evaluation provides a tangible and practical framework for validating design choices. It allows stakeholders to

visualize the potential behavior of the system and gain insights into its strengths and weaknesses before substantial

resources are invested in implementation. This proactive assessment aligns with the principle of risk mitigation, as

issues identified early in the development lifecycle are generally less costly to rectify than those discovered in later

stages [7].

Table 1: Software Architecture Early Evaluation Methods Comparison

Methods Quality Attribute Strengths Weakness

SAAM Modifiability
Identify areas of high

complexity

not execute trade-off

inquiry

ATAM Modifiability
Applicable for static &

dynamic properties.

No identification of

architecture features

ALMA Modifiability
Scenario generation

stopping criterion

Not use quantitative

study

CBAM Modifiability
Business measures for

particular system changes

Not perform trade-off

analysis

FAAM
Interoperability,

extensibility

Empowering the teams

in applying FAAM session
No tool support

SAAMCS
Modifiability,

flexibility

Measurement

instruments to identify

complex scenario.

No validation is done

SBAR
Performance,

reliability

An iterative process for

architecture evaluation.

Doesn’t involves goal

selection

ALPSM Maintainability

Prediction with an

understanding of

requirements

No tool support

ESAAMI Reusability

Introduces

“protoscenario” that

deployed during method’s

steps

Doesn’t perform

trade-off analysis

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

SACAM
Maintainability,

interoperability

Compare several

architecture from different

domains.

Doesn’t predict

maintenance effort with

size changing of

components

SALUTA Usability

Analyze the extracted

usability patterns &

properties.

Doesn’t predict

maintenance effort with

size changing of

components

SAAMER Reusability
Designers, end-users are

involved
No tool support

ISAAMCR
Flexibility.

reusability

Provide architectural

views analysis template.
No tool support

3.2 Late Evaluation Methods

Late evaluation methods represent a distinct phase in the software architecture evaluation process, focusing on the

validation and refinement of architectural decisions in later stages of development. This phase often occurs after the

initial design has been implemented or as the project progresses towards completion. In this context, several notable

late evaluation methods have been introduced, each offering unique perspectives and methodologies. The late

evaluation approaches covered in this research include Tvedt et al.’s Approach, Lindvall et al.’s Approach, Fiutem

and Antonio's Approach, Murphy et al.’s Approach, and Sefika et al.’s Approach [8].

Table 2: Late Evaluation Methods Comparison

Methods Quality Attribute Strengths Weakness

Tvedt et al.'s

Approach Accuracy

Identify actual and

planned architecture,

Changes are placed

Classes and design

patterns are violated.

Lindvall et al.'s

Approach

Maintainability

Compare the new,

previous and planned

architecture.

Inter-module

coupling violated

Fiutem and

Antonio's
Consistency

Compare and determine

the inconsistency

Code is violated

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

Approach (Tool

based)

Murphy et al.'s

Approach (Tool

based)

Compliances

Check the declarative

mapping between the two

models

Calls between

modules are violated

Sefika et al.'s

Approach (Tool

based

Integration

Integrates logic, static and

dynamic visualization

Design patterns are

violated

4. Conclusion

In conclusion, the survey of software architecture evaluation methods highlights a predominant reliance on

scenario-based approaches in the current landscape. These methods, rooted in envisioning and analyzing realistic

usage scenarios, prove to be foundational in understanding and enhancing the quality attributes of software systems.

The emphasis on scenarios allows for a proactive assessment, enabling early identification and mitigation of

potential architectural issues. The implementation of scenario-based methods has demonstrated efficacy in

delivering singular or multiple quality attributes within software systems, contributing to the robustness and

adaptability of architectures.

However, a comprehensive comparative analysis of these methods conducted during the survey has brought to

light certain challenges and areas for improvement. Identifying these challenges is crucial for advancing the field

and refining existing evaluation methodologies. Whether it be in the realm of scenario-based methods or other types

of evaluation approaches, recognizing the limitations and addressing the identified issues is integral to the continual

evolution of software architecture evaluation practices.

Moving forward, research and development efforts should focus on innovating and diversifying evaluation

methods to address the identified challenges. This includes exploring novel approaches that can complement or

enhance the effectiveness of scenario-based methods. Additionally, attention should be given to tool-based

evaluations, incorporating technological advancements to streamline and automate the evaluation process.

In essence, while scenario-based methods have played a central role in software architecture evaluation, the field

is dynamic, and there is an ongoing need for refinement and innovation. The survey sets the stage for further

exploration and improvement, fostering a continuous cycle of research and enhancement to meet the evolving

demands and complexities of contemporary software systems.

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

References

[1] M. A. Babar, B. Kitchenham, and R. Jeffery, “Comparing distributed and face-to-face meetings

for software architecture evaluation: A controlled experiment,” Empirical Software Engineering,

vol. 13, no. 1. pp. 39–62, 2008.

[2] P. Shanmugapriya and R. Suresh, “Software Architecture Evaluation Methods - A survey,”

International Journal of Computer Applications, vol. 49, no. 16. pp. 19–26, 2012.

[3] M. A. Babar and I. Gorton, “Comparison of scenario-based software architecture evaluation

methods,” Proceedings - Asia-Pacific Software Engineering Conference, APSEC. pp. 600–607,

2004.

[4] B. Roy and T. C. N. Graham, “Methods for Evaluating Software Architecture : A Survey,”

Computing, vol. 545, no. 2008–545. p. 82, 2008.

[5] R. Kazman, L. Bass, G. Abowd, and M. Webb, “SAAM: a method for analyzing the properties of

software architectures,” Proceedings of 16th International Conference on Software Engineering.

pp. 81–90.

[6] S. Abrahão and E. Insfran, “Evaluating Software Architecture Evaluation Methods: An Internal

Replication,” Proceedings of the 21st International Conference on Evaluation and Assessment in

Software Engineering. pp. 144–153, 2017.

[7] A. Patidar and U. Suman, “A Survey on Software Architecture Evaluation.” pp. 967–972, 2015.

[8] M. Konersmann, A. Kaplan, T. Kühn, R. Heinrich, A. Koziolek, R. Reussner, ..., J. P. Töberg,

"Evaluation methods and replicability of software architecture research objects," in *2022 IEEE

19th International Conference on Software Architecture (ICSA)*, March 2022, pp. 157-168.

